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Anisotropic dynamical scaling in a spin model with competing interactions
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Results are presented for the kinetics of domain growth of a two-dimensional Ising spin model with com-
peting interactions quenched from a disordered to a striped phase. The domain growth expongnt$/are
and 8= 1/3 for single-spin-flip and spin-exchange dynamics, as found in previous simulations. However, the
correlation functions measured in the direction parallel and transverse to the stripes are different as suggested
by the existence of different interface energies between the ground states of the model. In the case of single-
spin-flip dynamics an anisotropic version of the Ohta-Jasnow-Kawasaki theory for the pair scaling function can
be used to fit our datdS1063-651X97)13210-X

PACS numbg(s): 05.70.Ln, 05.50+q, 82.20.Mj

The kinetics of phase separation as systems with compelength—the width of the lamellae is always one lattice spac-
ing interactions quenched below their ordering temperaturéng in the model considered here. Neverthless our results
is the subject of much current research in a variety of fieldgnay be relevant for systems with more realistic lamellar
in physics and other sciencgs. Sometimes the equilibrium phases. Moreover, from a more theoretical point of view, it is
configuration of these systems is a lamellar structure with théteresting to have an explicit example of how the scaled
ordered phases arranged in stripes. Our aim here is to studrrelation functions can depend on the details of the system,
the growth of striped phases in a generalization of the two@ISO in relation with recent discussions on this thefme

dimensional(2D) Ising model. In particular, we will focus The model we consider is the well-known Ising version of

our attention on dynamical properties of the correlation functhe bidimensional isotropic eight vertex modg], with

tions in the directions parallel and transverse to the stripes HamiltonianH given by

In the simplest cases the late time ordering process is
characterized by a single time dependent length)~t? —BH=31 sis;+3; > sisi+d; > ssiss, (D)
representing the average domain gi2g This implies a par- () i [k

ticular behavior for the correlation function: #(x,t) is the  \yheres; are Ising spins on a bidimensional square lattice and
ordering field the equal time correlationC(r,t) the sums are respectively on nearest neighbor pairs of spins,
=(p(X,t)@(x+r,t)) has the scaling form C(r,t)  nextto the nearest neighbor pairs and plaquettes. Periodic
— £(r/R(t)) wheref(z) is a scaling function. Our results for Poundary conditions are always assumed. Bt 0,J]

the striped phase show the same growth exponent in any 2/J2l andJs small a critical line separates the paramag-
direction relative to the stripes and an explicit dependence df€tic Phase from a region where four phases corresponding

the differentlongitudinal and transversal scaling functions on© 9round _sta'écges évngdalternate EIUS afndhmmus coIL;mns or
the microscopic details of the system. We will try to under-TOWS COexist[8]. Sudden quenches of the system from a

stand this difference and, in the case of single-spin-flip dy_(:ompletely disordered initial configuration to the stripe-

. . 2 .2 ordered phases will be studied by numerical simulations at
namics, we interpret our data by a generalization to aniso;

tropic cases of the Ohta-Jasnow-Kawas@dK) theory[3] both zero and finite temperature, for different values of the

) . . i ; parameters, with heat-bath single-spin-flip] and spin-
for the scaling function. The anisotropic OJK theory is thenexchange dynamidgL0].

tested on the Ising model with different nearest-neighbor getare presenting our results it is useful to summarize the
couplings for the two square lattice directions. known behavior of systenil) during the phase separation
Lamellar phases appear in many physical systems. Exsrocess. First consider quenching in the ferromagnetic phase
amples are diblock copolymer me[#], surfactant-oil-water i, poth d=2 andd=3. When all the couplings are ferro-
mixtures[5], and dipolar fluids with long-range Coulombic magnetic the growth exponent = 1/2 or 8= 1/3[2,11,12
interactions[6]. Different from these systems, the Striped Corresponding respecti\/e|y to Sing|e-spin-f|ip and Spin-
phase of this paper is not characterized by any mesoscopiskchange dynamics. The situation becomes different for a
weak antiferromagnetic couplindy when, still in the ferro-
magnetic phase, energy barriers are opposite the coarsening
*Electronic address: cirillo@ba.infn.it of the domains and the system does not relax to equilibrium
"Electronic address: gonnella@ba.infn.it if the temperature is zerfd3]. In d=3 the energy barriers
*Present address: lIstituto Elaborazione Segnali ed Immagiriire proportional to the linear dimension of domains and a
CNR, via Amendola 166/5, 70 126 Bari, Italy. Electronic address:logarithmic growth is expected13]. Quenching in the
stramaglia@axpba5.ba.infn.it striped phase iml=2 has been already studied[it4]. The
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FIG. 1. Typical configuration of modél) in the scaling regime.
Gray and white squares represent, respectively, plus and minu r/t
spins; black squares represent the interface sites. The picture refers . ) 05
to a 100< 100 square lattice, at zero temperature, with parameters G- 2. Scaling functions (2) andf(z), z=r/t™”in the case
3120.1,32: _101 andJ3:0, after 150 Mchonte Carlo Steps of Slngle-spln-fllp dynamlcs Wltﬁ'ZO, J]_:O.l, J2: -1, and\]g

per sit8. The three boxes evidence different kinds of interfaces. 0+ We averaged over 50 different histories on 2x@00 lattice.
Longitudinal(above and transverséelow) correlations are shown

_ _ _ _ at times 180@), 220(), 260(0), 300(J), 340(A), 380(¢),
simulations of[14] show that also in the striped phase the420(*)l and 460(*). Thesolid lines are the best OJK fits.

average size of the domains growsR() ~t# with g=1/2

or B=1/3 for single-spin-flip and spin-exchange dynamics.qrowing domains in the scaling regime. We introduce the

Motivated by the idea of studying asymptotic correlations ingqyal timelongitudinal andtransversalcorrelation functions
lamellar phases we have analyzed again the growth and thgspectively defined as

dynamical scaling in the striped phase of modgl

A typical configuration of the system during the evolution C,(r,t)=(s(i,j)s(i+e(i,j)r,j+[1—e(i,j)]r)),
after a quench af=0 is given in Fig. 1. The configuration is
a patchwork of vertical and horizontal striped domains. C(r,t)=((—21)"s(i,j)s(i+[1—e(i,j)]r,j+€(i,j)r)),
Simulations show that in the case of single-spin-flip dynam-
ics there are no energy barriers and the system separates also
at zero temperature. To monitor the domain growth wewheree(i,j) is 1 (zero if site (i,j) belongs to a horizontal
evaluated the number of interfaces present in the system. Tiyertica) domain and the average is performed over all the
decide if a given site belongs to an interface or not, wesites not belonging to interfaces at tim@nd over different
compare the configuration of the system in a neighborhoogtories of the system. These correlations have the property
of the site with four given patterns corresponding to the fourthat for a fixed {,j) they become zero outside a given do-
ground states of the model. Then it is possible to define &nain. The scaling behavior &, andC; for a particular case
distance between each pattern and the local configuration d¥ith single-spin-flip dynamics is shown in Fig. 2 where data
the system. If this distance is greater than some threshold wiéken at different times have been plotted in terms of the
say the site belongs to an interface, otherwise it is a part g$caling variablez= r/\ﬁ. The parameters of the simulations
some domairj15]. Our results have been shown not to de-of Fig. 2 wereJ;=0.1,J,=—1,J3=0. We see that the lon-
pend on the values of the threshold and of the size of thgitudinal and the transversal scaling functidnsand f, are
patterns to be compared. Interfaces identified in this way ardifferent, which is a general feature resulting from our simu-
shown in Fig. 1. Ind=2 the total length of interfaces per lations [16]. Actually the difference betweef, and f, is
unit volumeL scales as the inverse of the average size ofery tiny in the case of spin-exchange dynamics, but always
domains. The results dfl4] are confirmed by our simula- understandable on the basis of the arguments given below. In
tions: we findL~t~%%in the case of single-spin-flip dynam- the following we will show results only for simulations with
ics andL~t~ %2 in the spin-exchange dynamics. The samesingle-spin-flip dynamics.
conclusions have been obtained also when monitoring the To explain the observed difference betwefgenand f; a
shrinking of aN X N square domain of one phase immersedsimple argument can help: a ferromagnetic couplihg
in a sea of the three other phases. In this case the dependemeeuld favor longitudinal over transversal correlations while
on N of the time of shrinking can be used to evaluate thethe reverse is true whedhy is negative. This is indeed what
growth exponent. happens. The results of simulations &i=-0.1,J,

We now turn to consider the correlation properties of=—1,J3=0 are the same as those of Fig. 2 but with the role

0.5
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of C, andC, reversed. With fixed, andJz, not only isC, ! .
always greater tha€,; for J;>0 while C,<C, for J;,<0,

but the behavior oC, andC; is symmetric with respect to 09
the change of the sign df;. A heuristic argument, based on 08
the existence of interfaces with different surface tensions be
tween the four different domains, can explain this symmetry -

For simplicity, consider interfaces parallel to the lattice di- .,
rections andl;=0. There are three types of these interfaces.§ 06
all depicted in the boxes in Fig. 1. On the left of the picture§

a boundary between a vertical and a horizontal domain i o5
marked; this interface reduces both longitudinal and trans-g
versal correlations and it does not matter for our argument® o4
The situation is different for the two other kinds of interfaces’g
marked in Fig. 1: the interface in the middle reduces only 03
transversal correlations while the one on the right reduce
only longitudinal correlations not influencing the transversal 92
ones. ThelT=0 excess energy of the interface in the middle

is 2J,—J; while the excess energy for the interface on the 91
right is 2J,+J;. Since the excess energy is the driving force
for the phase separation process, if we assume that the role
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these two interfaces is the same during this process, we c:

expect a symmetric behavior of the longitudinal and trans ot*

versal correlation functions with respect to the change of , , i )
sign ofJ,. FIG. 3. Scaling collapse of the correlation functions of the Ising

. — . . _model at finite temperature. Data were obtained averaging over 250
A theoretical prediction for the behavior of the pair cor Stories in the anisotropic cast,=2 andd, =1, and over 447 sto-

relation scaling function in models with nonconserved scalar

. S ries in the isotropic casé,=J,=1, on a 40x 400 square system.
field is given by the OJK theor}8]. Monte Carlo data have From above to below, correlations along thelirection in the an-

been shown tc_) be reproduced by_the OJK theory better thai@otropic case, correlations in the isotropic case, and correlation
by other _theorles after an a_pproprla_te rescaling of the t(':‘n_moa'long they direction in the anisotropic case are shown at times
ral coordinatg 17]. The scaling function of the OJK theory is 350m), 450(), and 500¢). The solid lines are the best OJK
given by fits.

2
f(z)= —sin Y exp —z?/D)], (3)  the anisotropy and would give the usual spherically symmet-
& ric OJK theory. However, the correlations in terms of the
where z=1/t2 and D=8(d—1)/d. This gives the Porod original space coordinates would have different Porod laws

linear behavio18] at smallz of the correlation function WIth @x/ay=By/B,, showing an anisotropic behavior. Of

f(2)~1—az with a=242/(mD). Practically, Monte course, it is not possible to si'multaneously (.alim'inate by a
Carlo and theoretical predictions can be compared imposingfScaling bottB, andB, when higher order derivative terms
the same Porod behavior. This procedure in our simulation&® Present in the dynamical equation, so that the scaling
gives two differenta for the longitudinal and transversal function in a general anisotropic model is expected to depend
correlations, @, =0.383 and a,=0.414 for J;=0.1. The N some irriducible way on microscopic parameters.
above discussed symmetry corresponds to the fact that when The anisotropic OJK behavior for the mode) can be
J,=—0.1 the best fit with the OJK function is given by,  tested by studying the dynamical scaling of the Ising model
=0.406 anda,=0.376. with different couplingd, andJ, in the two lattice directions.
The above results show that the OJK theory well de-In Fig. 3 the scaled correlation data in thend they direc-
scribes the pair scaling function in anisotropic cases if a fre¢ions are compared with the OJK scaling function. The simu-
parameter is used to fit the data in the different directionslations are at finite temperature with=2 andJ,=1. Data
Since the surface tension is the origin of the anisotropic befor the usual Ising model witd,=J,=1 are also plotted.
havior, it is reasonable to check the validity of the OJKThe above rescaling argument would suggeﬁt/ay
theory for anisotropic surface tension models in the simplest \/m We measure a ratier, / a,=1.548, which is not
case corresponding to a field model with anisotropic kinetiGar from the expected ratio 1.414 and confirms the fact that
terms. We consider the time dependent Ginzburg-Landathe 0K theory well reproduces the simulation data in aniso-

equation tropic cases. The agreement with the theoretical expectation
5 5 becomes stronger by decreasing the value of the temperature.
Jd 1% d = -
—QD:BX—()D-FBy—(P—V'((p), @) In the casel,/J,=2 and zero temperature we have mea
Jt x> ay? sureday / a,=1.4304.

To conclude, we have studied domain growth in a spin
whereV(¢) is the usual double-well potential. The rescaling model with four equivalent striped ground sta{d9]. The
Xx—x'=B,x andy—y’= \/B—yy would formally eliminate pair correlation functions are different when measured in the
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direction parallel and transverse to the stripes. An explanatension models. Whether other quantities such as the auto-
tion of this difference can be given on the basis of the dif-correlation exponent or other correlation functions not con-
ferent interface energies between the four ground states. Ogidered here depend on the anisotropy of the system is a
results with single-spin-flip dynamics can be analyzed in thenatter for a future study.

context of the Ohta-Jasnow-Kawasaki theory, which is ex-

pected to well reproduce scaling data in anisotropic surface We thank Amos Maritan for helpful discussions.

[1] See, e.g., Dynamics of Complex Systems, Proceedings of thgl2] J. F. Marko and G. T. Barkema, Phys. Rev.52, 2522
Conference held at Calcutta, India, 1995, edited by S. (1995.

Dattagupta, D. Dhar, and S. P{iRhysica A224(1996)]. [13] J. D. Shore, M. Holzer, and J. P. Sethna, Phys. Rev6B
[2] A. J. Bray, Adv. Phys43, 357 (1994. 11 376(1992; M. Rao and A. Chakrabarti, Phys. Rev.52,
[3] T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. L4%. R13(1995.

1223(1982. [14] A. Sadiqg and K. Binder, J. Stat. Phya5, 517 (1984).

[4] S. F. Bates, Scienc251, 898(1991). [15] This procedure is basically the same used 14| where 2
[5] G. Gompper and M. SchickPhase Transitions and Critical X2 patterns were used.

PhenomenaVol. 16, edited by C. Domb and J. L. Lebowitz [16] The correlations defined in Eg), due to the presence of the
(Academic Press, New York, 1994 terme(i,j), are nottrue two-point correlation functions. How-
[6] C. Sagui and R. C. Desai, Phys. Rev. L&, 3995(1993. ever, it has been checked that the pair correlation functions
[7] See, e.g., A. D. Rutenberg, Phys. Revo& R2181(1996. calculated as in14] give results indistinguishable from ours.

[8] R. J. Baxter,Exactly Solved Models in Statistical Mechanics [17] K. Humayun and A. J. Bray, Phys. Rev.48, 10 594(1992.

(Academic Press, London, 1982 [18] G. Porod, inSmall Angle X-Ray Scatteringdited by O. Glater

[9] R. J. Glauber, J. Math. Phy4, 294 (1962. and O. Kratsky(Academic, New York, 1982
[10] See, e.g., K. Kawasaki, iRhase Transitions and Critical Phe- [19] A brief review of existing results on phase ordering dynamics
nomenaVol. 2, edited by C. Domb and M. GredAcademic in systems with multiply degenerated ground stééeg., clock

Press, London, 1970 and Potts modelsis given in the paper by S. Puri, R. Ahlu-

[11] M. Rao, M. H. Kalos, J. L. Lebowitz, and J. Marro, Phys. Rev. walia, and A. J. Bray, Phys. Rev. &5, 2345(1997.
B 13, 4328(1976.



